22,492 research outputs found

    The RoboFlag SURF competition: results, analysis, and future work

    Get PDF
    The culmination of the 2002 RoboFlag Summer Undergraduate Research Fellowship program, jointly operated between California Institute of Technology and Cornell University, was a final competition between two teams of three undergraduate researchers. After ten weeks of preparation, Team Pasadena defeated Team Ithaca in two of the three final games. This paper provides the detailed results of the competition, an analysis of the competition, and reviews the future work

    Loss-tolerant operations in parity-code linear optics quantum computing

    Get PDF
    A heavy focus for optical quantum computing is the introduction of error-correction, and the minimisation of resource requirements. We detail a complete encoding and manipulation scheme designed for linear optics quantum computing, incorporating scalable operations and loss-tolerant architecture.Comment: 8 pages, 6 figure

    Efficient Parity Encoded Optical Quantum Computing

    Get PDF
    We present a linear optics quantum computation scheme with a greatly reduced cost in resources compared to KLM. The scheme makes use of elements from cluster state computation and achieves comparable resource usage to those schemes while retaining the circuit based approach of KLM

    Loss Tolerant Optical Qubits

    Get PDF
    We present a linear optics quantum computation scheme that employs a new encoding approach that incrementally adds qubits and is tolerant to photon loss errors. The scheme employs a circuit model but uses techniques from cluster state computation and achieves comparable resource usage. To illustrate our techniques we describe a quantum memory which is fault tolerant to photon loss

    Self-immolative linkers in polymeric delivery systems

    Get PDF
    There has been significant interest in the methodologies of controlled release for a diverse range of applications spanning drug delivery, biological and chemical sensors, and diagnostics. The advancement in novel substrate-polymer coupling moieties has led to the discovery of self-immolative linkers. This new class of linker has gained popularity in recent years in polymeric release technology as a result of stable bond formation between protecting and leaving groups, which becomes labile upon activation, leading to the rapid disassembly of the parent polymer. This ability has prompted numerous studies into the design and development of self-immolative linkers and the kinetics surrounding their disassembly. This review details the main concepts that underpin self-immolative linker technologies that feature in polymeric or dendritic conjugate systems and outlines the chemistries of amplified self-immolative elimination

    Whole-brain patterns of 1H-magnetic resonance spectroscopy imaging in Alzheimer's disease and dementia with Lewy bodies

    Get PDF
    Acknowledgements We thank Craig Lambert for his help in processing the MRS data. The study was funded by the Sir Jules Thorn Charitable Trust (grant ref: 05/JTA) and was supported by the National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre and the Biomedical Research Unit in Lewy Body Dementia based at Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust and Newcastle University and the NIHR Biomedical Research Centre and Biomedical Research Unit in Dementia based at Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge.Peer reviewedPublisher PD
    corecore